Sunday, 8 September 2019

What is Biotechnology? Describe the underlying techniques of genetic engineering and enzyme immobilization.

What is Biotechnology? Describe the underlying techniques of genetic engineering and enzyme immobilization.               

A. Biotechnology is the industrial utilization of biological systems or processes. The most ancient biotechnological art is fermentation. Living micro-organisms have been used for centuries to make curds. condiments, cheese, and vinegar, to prepare dough for bread. The ability to control and manipulate microbes and use them for various applications has resulted in current biotechnology where microbes are used for a variety of purposes, related to health, medicine. food, pollution control, etc.


Genetic Engineering

The modem biotechnology revolution is based on the understanding and manipulation of the structure of DNA. DNA is a complex organic molecule that directs the synthesis of proteins in all living organisms. Thus, it controls the physical structure, growth, reproduction, and function of all living beings. The program for controlling protein synthesis is coded in the chemical structure of DNA. The discovery of the code and the synthesis of DNA in test tubes were important milestones in genetic engineering. However, the foundation of genetic engineering was laid by the discovery, that DNA supplied from outside is accepted by micro-organisms. DNA thus inserted into the cell en from a micro-organism, enables the cells to make the proteins specified in the codes of the inserted DNA. These new cells can be cultivated or cloned, until a significant number of cells are available to produce specific, desired protein molecules. Through genetic engineering, large quantities of scarce biologically significant proteins that are not easily available from natural sources can be manufactured. For example, insulin needed by diabetic patients can now be produced on a large scale using this technique. By selecting suitable bacteria, and using genetic engineering techniques, new varieties of bacteria that can eat man-made artificial products like plastics are being developed.

Enzyme Immobilisation

The use of enzymes as catalysts is well known in a number of industries, such as baking or wine making. But purified enzymes are soluble in water. It is, therefore, not easy to remove them from the final product. Further, it is difficult to re-use them. Thus, enzyme activity is lost in one cycle of the chemical reaction. These difficulties led to the development in the late 1960s of immobilized enzymes. The trick is to link an enzyme chemically to a large molecule, such as gelatin. It can then be used as a catalyst, and it can be extracted with the large molecule, for use once again. Immobilized enzymes have been successfully used in the production of semi-synthetic penicillin and in the large scale production of fructose from maize. Fructose is sweeter than glucose, yet it has the same calorific value and is used as a low-calorie sweetener.

No comments:

Post a Comment

Comment Here

Popular Posts

Contact Form

Name

Email *

Message *